top of page

publications

​AT SCRIPPS RESEARCH

45. Mapping the FGF2 interactome identifies a functional proteoglycan coreceptor.

         M Critcher, JM Pang , ML Huang​

44. Charting the dynamic trophoblast plasma membrane identifies LYN as a functional regulator of syncytialization

         AE Reeves, Z Vilen, TR Fuentecilla, CG Parker, ML Huang​

jpgAsset 1.png

We put the spotlight on recent work by Malaker et al., to empirically decode the mucinome.

 A chemical biology-based strategy to build proteoglycans to study their function and interactions in live cells. 

SDC1describe.jpg

We envisioned using APEX2 proximity tagging in a 'baitless' manner to biotinylate and identify proteins on cell surfaces. Note: We find that anchoring APEX2 on cell surfaces (via cell surface engineering) is important to get tagging to work. We also find that N-linked glycosylation occludes some protein residues for radical-mediated tagging (see SI). A fun collaboration with Naomi Kamasawa to image APEX2-labelled cell surfaces using TEM (right).

MH-girl green_edited.jpg

Our editorial piece illustrating the need to study protein glycoconjugates as replete entities and the latest advancements to study their structures, interactions, and functions. 

Mia: Among the greatest joys of my career thus far has been to serve as a guest editor alongside Editor-in-Chief Prof. Laura Kiessling, for this special issue. 

companion article detailing our design, protocols, and procedures to use proximity tagging as a means of capturing GBP-glycoprotein interactions in live cells.

Screenshot 2020-11-02 at 15.21.58.png

 A review article discussing the various methods and applications of cell surface glycan engineering, it's history and future directions.

gal3.png

We present the use of in situ proximity labeling as a powerful approach to tag the dynamic glycoprotein interactors for galectin-3 in the context of living hepatic stellate cells. 

Proc Natl Acad Sci (2020) 117:27329.

array.png

 A review article surveying modern approaches towards the identification and analysis of glycan-protein intereractions. 

ACS Symposium Series (2020) 1346:1

faraday.png

 A conference report summarizing the discussions held at the Nanolithography of Biointerfaces Faraday Discussion in London, UK. 

oct4.png

A companion protocol article to accompany our work on the small molecule, surfen, which antagonizes cell surface heparan sulfate to maintain the pluripotency of mouse embryonic stem cells in culture.

​POSTDOCTORAL WORK AT UC SAN DIEGO​

25. Influencing Early Stages of Neuromuscular Junction Formation through Glycocalyx Engineering

ML Huang, EM Tota, TM Lucas, K Godula 

ACS Chem Neuro. (2018) 9:3086.

24. Embryonic Stem Cell Engineering with a Glycomimetic FGF2/BMP4 Co-Receptor Drives Mesodermal Differentiation in a Three-Dimensional Culture.

MR NaticchiaLK LaubachEM TotaTM LucasML HuangK Godula*

ACS Chem. Biol. (2018) 13:2880.

23. Glycocalyx scaffolding to control cell surface glycan displays. 

ML Huang, EM Tota, S Verespy. 

Curr Prot Chem Biol (2018) 10:e40.

22. Heparin-fibronectin interactions in the development of extracellular matrix insolubility. 

I Raitman, ML Huang, SA Williams, B Friedman, K Godula, JE Schwarzbauer. 

Matrix Biol (2018) 67:107.

21. Small molecule antagonist of cell surface glycosaminoglycans restricts embryonic stem cells in a pluripotent state. 

ML Huang, AL Michalak, CJ Fisher, M Christy, RAA Smith, K Godula.

Stem Cells (2018) 36:45.

 

20. Glycocalyx scaffolding with synthetic nanoscale glycomaterials.

ML Huang, S Purcell, S Verespy, Y Wang, K Godula. 

Biomat Sci (2017) 5:1537.

19. Human milk oligosaccharides inhibit growth of group B Streptococcus. 

AE Lin, CA Autran, A Szyszka, T Escajadillo, ML Huang, K Godula, AR Prudden, G-J Boons, AL Lewis, KS Doran, V Nizet, L Bode.

J Biol Chem (2017) 292:11243.

18. Synthetic mucus nanobarriers for identification of glycan-dependent primary Influenza A infection inhibitors. 

M Cohen, HP Senaati, CJ Fisher, ML Huang, P Gagneux, K Godula. 

ACS Cent Sci (2016) 2:710.

17. Capture and characterization of influenza A virus from primary samples using glycan bead arrays. 

M Cohen, CJ Fisher, ML Huang, LL Lindsay, M Plancarte, WM Boyce, K Godula, P Gagneux. 

Virology (2016) 493:128.

16.  Glycomaterials in immunology: exploring the roles of glycans integral to pathogen interactions and the accompanying host immune response.

ML Huang, CJ Fisher, K Godula. 

Exp Biol Med (2016) 241:1042.

15.  Nanoscale materials for probing the biological functions of the glycocalyx. 

ML Huang, K Godula. 

Glycobiology (2016) 26:797.

14.   Glycocalyx remodeling with glycopolymer-based proteoglycan mimetics. 

ML Huang, RA Smith, GW Trieger, K Godula. 

Methods Mol Biol (2016) 1367:207.

13.   Determination of receptor specificities for whole influenza viruses using multivalent glycan arrays

ML Huang, M Cohen, CJ Fisher, RT Schooley, P Gagneux, K Godula. 

Chem Commun (2015) 51:5326. 

12.  Priming the cellular glycocalyx for neural development. 

ML Huang, K Godula. 

ACS Chem Neurosci (2014) 5:873.

11.  Glycocalyx remodeling with proteoglycan mimetics promotes neural specification in embryonic stem cells. 

ML Huang,* RA Smith,* GW Trieger, K Godula. * equal authorship

J Am Chem Soc (2014) 136:10565. 

 

For prior work, click here.

IMG_3751.JPG
bottom of page