publications
AT SCRIPPS RESEARCH
30. Glycoengineering: Scratching the Surface.
M Critcher, T O'Leary, ML Huang*
Biochem J (2021) 478 (4) 703-719

A review article discussing the various methods and applications of cell surface glycan engineering, it's history and future directions.

29. Mapping glycan-mediated galectin-3 interactions by live cell proximity labeling.
E Joeh, T O'Leary, W Li, R Hawkins, J Hung, CG Parker, ML Huang*
Proc Natl Acad Sci (2020) 117:27329.
We present the use of in situ proximity labeling as a powerful approach to tag the dynamic glycoprotein interactors for galectin-3 in the context of living hepatic stellate cells.
E Joeh, Z Vilen, T O'Leary, ML Huang*
ACS Symposium Series DOI: 10.1021/bk-2020-1346.ch001

A review article surveying modern approaches towards the identification and analysis of glycan-protein intereractions.
A conference report summarizing the discussions held at the Nanolithography of Biointerfaces Faraday Discussion in London, UK.
S Chatterjee, TN Stephenson, AL Michalak, K Godula,* ML Huang*
Methods Enzymol. (2019) 626:249. (*co-corresponding authors)

A companion protocol article to accompany our work on the small molecule, surfen, which antagonizes cell surface heparan sulfate to maintain the pluripotency of mouse embryonic stem cells in culture.


POSTDOCTORAL WORK AT UC SAN DIEGO
25. Influencing Early Stages of Neuromuscular Junction Formation through Glycocalyx Engineering
ML Huang, EM Tota, TM Lucas, K Godula
ACS Chem Neuro. (2018) 9:3086.
MR Naticchia, LK Laubach, EM Tota, TM Lucas, ML Huang, K Godula*
ACS Chem. Biol. (2018) 13:2880.
23. Glycocalyx scaffolding to control cell surface glycan displays.
ML Huang, EM Tota, S Verespy.
Curr Prot Chem Biol (2018) 10:e40.
22. Heparin-fibronectin interactions in the development of extracellular matrix insolubility.
I Raitman, ML Huang, SA Williams, B Friedman, K Godula, JE Schwarzbauer.
Matrix Biol (2018) 67:107.
ML Huang, AL Michalak, CJ Fisher, M Christy, RAA Smith, K Godula.
Stem Cells (2018) 36:45.
20. Glycocalyx scaffolding with synthetic nanoscale glycomaterials.
ML Huang, S Purcell, S Verespy, Y Wang, K Godula.
Biomat Sci (2017) 5:1537.
19. Human milk oligosaccharides inhibit growth of group B Streptococcus.
AE Lin, CA Autran, A Szyszka, T Escajadillo, ML Huang, K Godula, AR Prudden, G-J Boons, AL Lewis, KS Doran, V Nizet, L Bode.
J Biol Chem (2017) 292:11243.
M Cohen, HP Senaati, CJ Fisher, ML Huang, P Gagneux, K Godula.
ACS Cent Sci (2016) 2:710.
17. Capture and characterization of influenza A virus from primary samples using glycan bead arrays.
M Cohen, CJ Fisher, ML Huang, LL Lindsay, M Plancarte, WM Boyce, K Godula, P Gagneux.
Virology (2016) 493:128.
16. Glycomaterials in immunology: exploring the roles of glycans integral to pathogen interactions and the accompanying host immune response.
ML Huang, CJ Fisher, K Godula.
Exp Biol Med (2016) 241:1042.
15. Nanoscale materials for probing the biological functions of the glycocalyx.
ML Huang, K Godula.
Glycobiology (2016) 26:797.
14. Glycocalyx remodeling with glycopolymer-based proteoglycan mimetics.
ML Huang, RA Smith, GW Trieger, K Godula.
Methods Mol Biol (2016) 1367:207.
13. Determination of receptor specificities for whole influenza viruses using multivalent glycan arrays.
ML Huang, M Cohen, CJ Fisher, RT Schooley, P Gagneux, K Godula.
Chem Commun (2015) 51:5326.
12. Priming the cellular glycocalyx for neural development.
ML Huang, K Godula.
ACS Chem Neurosci (2014) 5:873.
ML Huang,* RA Smith,* GW Trieger, K Godula. * equal authorship
J Am Chem Soc (2014) 136:10565.
GRADUATE WORK AT NEW YORK UNIVERSITY
10. Hydrophobic interactions modulate antimicrobial peptoid selectivity towards anionic lipid membranes.
K Andreev, MW Martynowycz, ML Huang, I Kuzmenko, B Wu, K Kirshenbaum, D Gidalevitz.
BBA-Biomembranes (2018) 1860:1414.
9. Cyclization improves membrane penetration by antimicrobial peptoids.
K Andreev, M Martynowycz, A Ivankin, ML Huang, I Kuzmenko, M Meron, B Lin, K Kirshenbaum, D Gidalevitz.
Langmuir (2016) 32:12905.
8. Osmoprotective polymer additives attenuate the membrane pore forming activity of antimicrobial peptoids.
PT Smith, ML Huang, K Kirshenbaum.
Biopolymers (2015) 103:227.
7. Amphiphilic cyclic peptoids that exhibit antimicrobial activity by disrupting Staphylococcus aureus membranes.
ML Huang, MA Benson, SBY Shin, VJ Torres, K Kirshenbaum.
Eur J Org Chem (2013) 17:3560.
6. Engineered biomimetic oligomers as dual-action antifreeze agents.
ML Huang, D Ehre, K Kirshenbaum, MD Ward.
Proc Natl Acad Sci (2012) 109:19922.
5. N-naphthyl peptoid foldamers exhibiting atropisomerism.
B Paul, GL Butterfoss, MG Boswell, ML Huang, R Bonneau, C Wolf, K Kirshenbaum.
Org Lett (2012) 14:926.
4. A comparison of linear and cyclic peptoids as potent antimicrobial agents.
ML Huang, SBY Shin, MA Benson, VJ Torres, K Kirshenbaum.
ChemMedChem (2012) 7:114.
3. Peptoid macrocycles: making the rounds with peptidomimetic oligomers.
B Yoo, SBY Shin, ML Huang, K Kirshenbaum.
Chem Eur J (2010) 16:5528.
UNDERGRADUATE WORK AT CUNY QUEENS COLLEGE
2. Synthesis and properties of polycationic derivatives of carbohydrates.
M Thomas, D Montenegro, A Castano, L Friedman, J Leb, ML Huang, L Rothman, H Lee, C Copodiferro, D Ambinder, E Cere, J Galante, JI Rizzo, K Melkonian, R Engel.
Carbohydr Res (2009) 344:1620.
1. The synthesis of polycationic lipid materials based on the diamine 1,4-diazabicyclo[2.2.2]octane.
R Engel, JI Rizzo, C Rivera, M Ramirez, ML Huang, D Montenegro, C Copodiferro, V Behaj, M Thomas, B Klaritch-vrana, JF Engel. P
Chem Phy Lipids (2009) 158:61.

