33. Proximity tagging identifies the glycan-mediated glycoprotein interactors of galectin-1 in muscle stem cells. 

Z Vilen, E Joeh, M Critcher, CG Parker ML Huang* 

in press ACS Chemical Biology doi.10.1021/acschembio.1c00313

Galectin-1 is a potent activator of muscle differentiation, and it is being evaluated as a therapeutic for muscle repair. Towards identifying the molecular mechanisms through which Galectin-1 exerts its effects, we identify its glycan-mediated interactors using proximity tagging coupled with quantitative mass spectrometry. 


 companion article detailing our design, protocols, and procedures to use proximity tagging as a means of capturing GBP-glycoprotein interactions in live cells.

Screenshot 2020-11-02 at 15.21.58.png

 A review article discussing the various methods and applications of cell surface glycan engineering, it's history and future directions.


We present the use of in situ proximity labeling as a powerful approach to tag the dynamic glycoprotein interactors for galectin-3 in the context of living hepatic stellate cells. 


 A review article surveying modern approaches towards the identification and analysis of glycan-protein intereractions. 


 A conference report summarizing the discussions held at the Nanolithography of Biointerfaces Faraday Discussion in London, UK. 


A companion protocol article to accompany our work on the small molecule, surfen, which antagonizes cell surface heparan sulfate to maintain the pluripotency of mouse embryonic stem cells in culture.


25. Influencing Early Stages of Neuromuscular Junction Formation through Glycocalyx Engineering

ML Huang, EM Tota, TM Lucas, K Godula 

ACS Chem Neuro. (2018) 9:3086.

24. Embryonic Stem Cell Engineering with a Glycomimetic FGF2/BMP4 Co-Receptor Drives Mesodermal Differentiation in a Three-Dimensional Culture.

MR NaticchiaLK LaubachEM TotaTM LucasML HuangK Godula*

ACS Chem. Biol. (2018) 13:2880.

23. Glycocalyx scaffolding to control cell surface glycan displays. 

ML Huang, EM Tota, S Verespy. 

Curr Prot Chem Biol (2018) 10:e40.

22. Heparin-fibronectin interactions in the development of extracellular matrix insolubility. 

I Raitman, ML Huang, SA Williams, B Friedman, K Godula, JE Schwarzbauer. 

Matrix Biol (2018) 67:107.

21. Small molecule antagonist of cell surface glycosaminoglycans restricts embryonic stem cells in a pluripotent state. 

ML Huang, AL Michalak, CJ Fisher, M Christy, RAA Smith, K Godula.

Stem Cells (2018) 36:45.


20. Glycocalyx scaffolding with synthetic nanoscale glycomaterials.

ML Huang, S Purcell, S Verespy, Y Wang, K Godula. 

Biomat Sci (2017) 5:1537.

19. Human milk oligosaccharides inhibit growth of group B Streptococcus. 

AE Lin, CA Autran, A Szyszka, T Escajadillo, ML Huang, K Godula, AR Prudden, G-J Boons, AL Lewis, KS Doran, V Nizet, L Bode.

J Biol Chem (2017) 292:11243.

18. Synthetic mucus nanobarriers for identification of glycan-dependent primary Influenza A infection inhibitors. 

M Cohen, HP Senaati, CJ Fisher, ML Huang, P Gagneux, K Godula. 

ACS Cent Sci (2016) 2:710.

17. Capture and characterization of influenza A virus from primary samples using glycan bead arrays. 

M Cohen, CJ Fisher, ML Huang, LL Lindsay, M Plancarte, WM Boyce, K Godula, P Gagneux. 

Virology (2016) 493:128.

16.  Glycomaterials in immunology: exploring the roles of glycans integral to pathogen interactions and the accompanying host immune response.

ML Huang, CJ Fisher, K Godula. 

Exp Biol Med (2016) 241:1042.

15.  Nanoscale materials for probing the biological functions of the glycocalyx. 

ML Huang, K Godula. 

Glycobiology (2016) 26:797.

14.   Glycocalyx remodeling with glycopolymer-based proteoglycan mimetics. 

ML Huang, RA Smith, GW Trieger, K Godula. 

Methods Mol Biol (2016) 1367:207.

13.   Determination of receptor specificities for whole influenza viruses using multivalent glycan arrays

ML Huang, M Cohen, CJ Fisher, RT Schooley, P Gagneux, K Godula. 

Chem Commun (2015) 51:5326. 

12.  Priming the cellular glycocalyx for neural development. 

ML Huang, K Godula. 

ACS Chem Neurosci (2014) 5:873.

11.  Glycocalyx remodeling with proteoglycan mimetics promotes neural specification in embryonic stem cells. 

ML Huang,* RA Smith,* GW Trieger, K Godula. * equal authorship

J Am Chem Soc (2014) 136:10565. 



10.  Hydrophobic interactions modulate antimicrobial peptoid selectivity towards anionic lipid membranes. 

K Andreev, MW Martynowycz, ML Huang, I Kuzmenko, B Wu, K Kirshenbaum, D Gidalevitz. 

BBA-Biomembranes (2018) 1860:1414.

9.    Cyclization improves membrane penetration by antimicrobial peptoids. 

K Andreev, M Martynowycz, A Ivankin, ML Huang, I Kuzmenko, M Meron, B Lin, K Kirshenbaum, D Gidalevitz. 

Langmuir (2016) 32:12905.

8.    Osmoprotective polymer additives attenuate the membrane pore forming activity of antimicrobial peptoids. 

PT Smith, ML Huang, K Kirshenbaum.

Biopolymers (2015) 103:227. 

7.    Amphiphilic cyclic peptoids that exhibit antimicrobial activity by disrupting Staphylococcus aureus membranes. 

ML Huang, MA Benson, SBY Shin, VJ Torres, K Kirshenbaum. 

Eur J Org Chem (2013) 17:3560. 

6.    Engineered biomimetic oligomers as dual-action antifreeze agents. 

ML Huang, D Ehre, K Kirshenbaum, MD Ward. 

Proc Natl Acad Sci (2012) 109:19922. 

5.    N-naphthyl peptoid foldamers exhibiting atropisomerism. 

B Paul, GL Butterfoss, MG Boswell, ML Huang, R Bonneau, C Wolf, K Kirshenbaum. 

Org Lett (2012) 14:926.

4.    A comparison of linear and cyclic peptoids as potent antimicrobial agents. 

ML Huang, SBY Shin, MA Benson, VJ Torres, K Kirshenbaum. 

ChemMedChem (2012) 7:114.

3.    Peptoid macrocycles: making the rounds with peptidomimetic oligomers. 

B Yoo, SBY Shin, ML Huang, K Kirshenbaum. 

Chem Eur J (2010) 16:5528.



2.    Synthesis and properties of polycationic derivatives of carbohydrates. 

M Thomas, D Montenegro, A Castano, L Friedman, J Leb, ML Huang, L Rothman, H Lee, C Copodiferro, D Ambinder, E Cere, J Galante, JI Rizzo, K Melkonian, R Engel. 

Carbohydr Res (2009) 344:1620.

1.    The synthesis of polycationic lipid materials based on the diamine 1,4-diazabicyclo[2.2.2]octane. 

R Engel, JI Rizzo, C Rivera, M Ramirez, ML Huang, D Montenegro, C Copodiferro, V Behaj, M Thomas, B Klaritch-vrana, JF Engel. P

Chem Phy Lipids (2009) 158:61.